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Abstract 
 

Anonymous Broadcast protocols based on Dining Cryptographers are 
inefficient in message complexity, requiring O(N2) messages per round.  We 
analyze a k-Anonymous protocol which remains live against Byzantine 
adversaries.  We achieve message complexity of O(Nf2) messages per round 
against f Byzantine adversaries. 

 
Introduction 
 
 The Dining Cryptographers problem was introduced by David Chaum as a technique for 
sender and recipient untraceability [1].  The original formulation requires messages quadratic in 
the number of participants.  k-Anonymous protocols compartmentalize groups of participants to 
reduce the message complexity. 
 
 The Byzantine Generals problem was named by Leslie Lamport [2] to describe the 
problem of arriving at consensus amidst the presence of traitors.  The lower bounds for 
participants in a network exchanging non-verifiable messages is 3f+1, where f is the number of 
traitors [2]. 
 
 In [3], we introduced a technique for implementing Dining Cryptographers in the 
presence of Byzantine adversaries.  We extend our previous work to reduce message complexity 
and extend the analysis of adversarial tactics. 
 
Network Model 
 
 We operate in a network where each participant may exchange secure, authenticated 
messages with any other.  Messages sent are never lost or corrupted, and all messages arrive in a 
timely fashion.  While this model is overly simplistic, we believe the techniques presented here 
may be extended to more realistic models without loss of generality. 
 
Adversary Model 
 
 We allow an omniscient adversary to control some participants in the network, but may 
not alter communications in which it is not the sender or receiver.  In all other respects, the 
adversary may act arbitrarily; sending gibberish, misleading or incorrect messages, and non-
participation. 
 We assume the adversary may control strictly less than 1/3 of the participants, as defined 
by the lower bounds for Byzantine adversaries exchanging non-verifiable messages [2]. 
 
 



Linearly Independent Groups 
 
 In [3] we describe a technique which divides a group of N participants into N sub-groups 
of (N-1) participants such that each participant is excluded from some sub-group.  The linearly-
independent nature of this division is leveraged to reveal the identity of the byzantine adversary.  
The sub-group from which the adversary is excluded is unaffected by his behavior. 
 
 We also introduced an anonymous reservation protocol, which may be generalized to 
allow arbitrarily small chance of collision in any given round.  Header bits are appended to the 
front of the protocol messages and each round participants select one bit at random.  Collisions 
occur if two participants reserve the same bit.  Without loss of generality, the number of header 
bits may be selected to be arbitrarily large to afford a range of collision rates, as needed by the 
application. 
 
Analysis of Adversary Tactics 
 
 Jamming 
 

Jamming occurs when a participant broadcasts in a slot which it did not reserve.  An 
adversary which performs jamming on all sub-channels is trivially revealed and ejected 
from the anonymity group. 

 
 Selective Jamming 
 

An adversary which jams a single sub-channel reveals his presence but remains 
anonymous within that sub-channel.  While this does not cause complete failure of the 
protocol, it is inefficient for the honest members which must continue to bear the burden 
of communication for the useless sub-channel. 

 
 Selective Non-Participation 
 

An adversary which chooses not to participate in some message exchanges is equivalent 
to one which sends gibberish for those exchanges.  His presence is revealed to the honest 
members, but he remains anonymous within the sub-channel.  

 
 Targeting Reservations 
 

Adversaries which target the reservation bits achieve no advantage.  The number of 
expected reservations is known and any additional reservations will be immediately 
recognized by honest members.  This case is equivalent to selective jamming. 

 
 
 
 
 
 



Analysis of Message Exchanges 
 
 The standard protocol for Secure Multiparty Sums requires two phases of messages 
broadcast to every other participant.  This is quadratic in the number of participants, requiring a 
total of 2N(N-1) messages per round. 
 
 The techniques in [3] enable equivalent message complexity over the number of sub-
channels in the group.  While efficient in achieving Byzantine tolerance, it remains quadratic in 
the number of participants. 
 
 In order to reduce the message complexity, we first examine a complete message 
exchange for the 4-party scenario and analyze the results. 
 
4-Party Message Exchange 
 
 Participants A, B, C, D join a Byzantine k-Anonymous group, and form 4 sub-channels 
containing 3 participants each, as illustrated in figure 1.  Each sub-channel proceeds as 
independent multiparty sums. 
 

  
 

Figure 1.  Left: Connection matrix for 4-party scenario. Right: Connection graph. 
 
 Let us examine the message exchanges for a single sub-channel in detail.  In Phase 1, 
each participant selects a message to broadcast and generates random shares which combine to 
reveal the message.  Each participant sends one share to each other participant, and receives a 
share in return (Figure 2). 
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Figure 2; a) Select message; b) Divide into shares; c) Exchange shares. 
 
 In Phase 2, these shares are combined into a partial sum which is broadcast to all other 
members.  Finally, the partial sums are combined and the protocol output is revealed (Figure 3). 

 

 
Figure 3; a) Combine shares into partial sum; b) Broadcast partial sums and compute output. 

 
Eliminating Phase 1 Messages 
 
 Without loss of security, the messages exchanged in Phase 1 may be replaced by a single 
setup round in which seeds for cryptographically-secure random number generators are 
exchanged.  Phase 1 messages are computed by all parties using the knowledge of the generator 
held by the intended recipients.  This allows correctly calculating the cyphertext for Phase 1, 
without the need to exchange random strings. 

 

 
 

Figure 4: Eliminating Phase 1 Messages 
 
 The security of the protocol now relies on the security of the random number generator.  
However, this is a small price to pay for cutting the message complexity by half. 
 
 

A B 

A C 

(a)             (b)                                   (c) 

(a)                                     (b) 

A 

C B 

A B 

B 

(seed) (seed) 

A B 

A 



Coordinator-Assisted Broadcast1 
 
 Intuitively, if all participants were honest, one could be elected as a coordinator.  The 
coordinator would receive the complete set of Phase 2 messages (N-1), combine them, then 
broadcast the result (N-1), for a total of 2(N-1) messages. 
 
 In our model, the adversary controls some fraction of the members.  If enough 
coordinators are elected such that at least 1 honest participant is included, then the protocol 
would guarantee progress.  Given f traitors in a group, a total of (f+1) participants must be 
elected coordinator to guarantee at least 1 honest coordinator. 
 
 Phase 2 becomes a two-part exchange.  Each non-coordinator (N-f-1) sends their Phase 2 
message to each coordinator (f+1).  Also, the coordinators (f+1) send a message to each other 
coordinator (f).  The coordinators combine all phase 2 messages, then re-broadcast.  Since each 
coordinator is privy to the final result, coordinators do not need to learn each others results.  This 
leaves each coordinator (f+1) sending a message to each non-coordinator (N-f-1). 
 
 The total exchange is 2(N-f-1)(f+1)+(f)(f+1) messages, achieving O(Nf2). 
 
Special Case: Reducing Message Size 
 
 In a long running anonymity group it is likely that one or more participants will abstain 
from broadcasting in some rounds.  The naïve protocol requires a complete set of slot exchanges 
only to find some message slots empty. 
 
 The anonymous reservation protocol allows a simple optimization in these cases - only 
exchange as many slots as have been reserved.  Nominally, in an N-participant group, each sub-
channel will exchange messages of size O(N-1).  In cases where fewer slots have been reserved, 
all participants of the sub-channel simply send smaller messages, corresponding to the number of 
reserved slots. 
 
Practical Implementation Considerations 
 
 Many small details remain to be worked out before practical deployment of these 
algorithms.  Specifically; choosing appropriate group sizes, selecting coordinators, and how 
much anonymity to aim for. 
 
 Coordinators may be fixed as part of the connection matrix, such that each sub-channel's 
coordinators are predetermined for any given group size.  This is easily seen in the example 
connection matrices (Figure 5). 

 

                                                 
1 In a byzantine group, this section’s N is the number of participants in each sub-group, not the full group size. 



 
Figure 5: Connection matrix, with sub-channel coordinators marked. 

 
 The choice of anonymity level is entirely arbitrary, however some lower bounds are a 
good place to start.  In legal cases within the US, 2-anonymity is enough to establish "reasonable 
doubt" in criminal trials, while 3-anonymity is enough to invalidate civil charges [4].  It is 
therefore suggested that a lower bound of 3-anonymity be used. 
 
 Given a large pool of participants, and an adversary which may control strictly less than 
1/3 of them, we may use the formula from [4] to calculate the group size, such that any random 
subset of M participants will contain at least k honest members. 
 
 k = Desired level of k-anonymity 
 M = Group size 
 B = Fraction of participants adversary may control 
 
 M = 2k / (1 - B) 
 
 Substituting k=3, B=1/3, we obtain N=9.  Since we desire byzantine failure tolerance, we 
must select the smallest f such that M < 3f+1.  This occurs with f=3, and gives us a final 
byzantine group size N=10, with 3-anonymity, and security against 3 traitors (Figure 5). 
 
 Finally, a message generated in an anonymous broadcast group may require delivery to a 
member of another broadcast group.  As with previous work [4,5], we adopt the technique of 
including a destination group identifier in the output message slot.  Each member of the local 
broadcast group sends messages targeted to a remote group to every member of the remote 
broadcast group. 
 
 Considering the analysis in prior sections, a simple optimization of this inter-group 
exchange involves sub-group coordinators (f+1) sending each remotely-targeted message of their 
sub-group to the (f+1) coordinators of the remote group, who in-turn broadcast to non-
coordinators of their group (N-f-1).  For a total exchange of (f+1)2+(N-f-1) messages per round. 
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Conclusion 
 
 We have analyzed a k-Anonymous Broadcast Protocol secure against Byzantine 
Adversaries.  The analysis and security assumptions have revealed techniques for reducing the 
message complexity of the protocol, achieving O(Nf2) messages per round.  This scaling is 
significantly better than existing practice and brings these techniques within practical 
application. 
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